
Chemical Lane/ Alford St. / Monsanto Brownfield

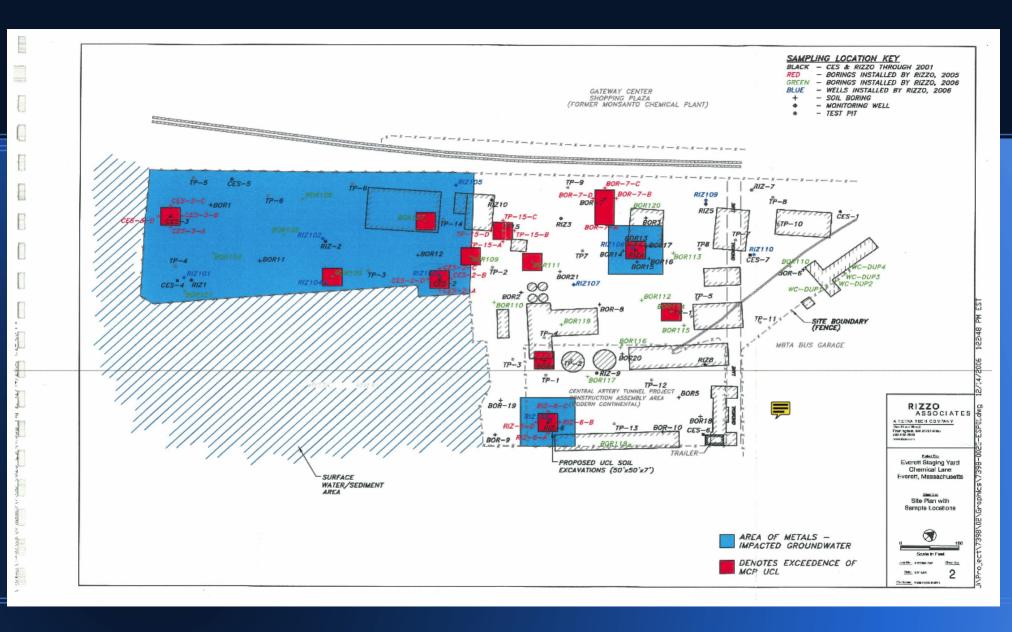
Billy Castor
Milo Stella
EEOS 476
Umass Boston
Prof. Anamarija Frankic

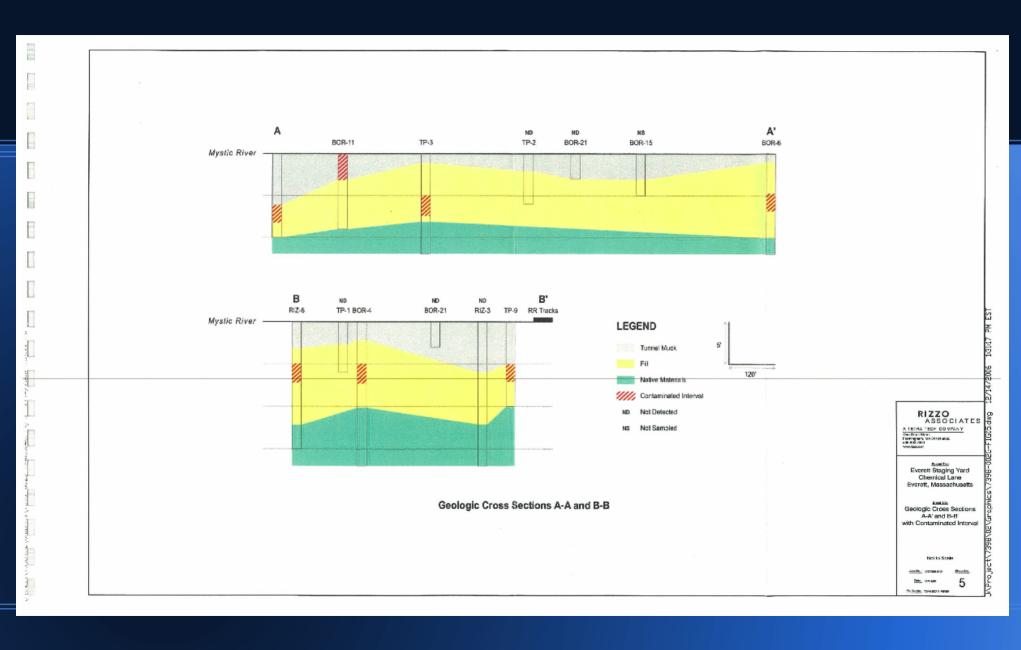
Site Boundary / Photo, 2011

History of Use

- Cochran Chemical (late 1800's-1929)
 - Major chemical producer during WWI
 - Developed & produced first Hydraulic Acid
- Monsanto (1929-1983)
 - Produced: Plasticizer, Sulfuric Acid
 - Stored: Aluminum, Acids, Dyes

Recent Ownership


- Boston Edison (1983-1995)
- O'Donnell Sand and Gravel (OSG) (1995 2001)
 - Tunnel Muck storage from Deer Island
- Mystic Landing LLC (2001-2009)
 - Modern Continental Construction as Proxy
 - Performed extensive testing
 - Received multiple regulatory extensions
- FBT Everett Realty LLC (2009-Present)


Regulatory Context

- Site subject to Massachusetts Contingency Plan
 - Initial notice of release in 1995
 - Requires hiring LSP to conduct site assessment
- 6 Phase process from assessment through remediation
- Tier II Classification yet to be "officially" completed due to numerous extensions
- Notice of Noncompliance (NON) issued 2009

LSP's and Findings

- CES
- Tetra Tech Rizzo / Rizzo Associates
 - Geo Tek
 - Williams Environmental Inc.
- Consistently measured elevated levels of Arsenic (As) and Lead (Pb) in Soils and Groundwater
- Repeatedly deemed of no immediate threat...
 Despite high levels of contaminants!

Observed Quantities of Arsenic and Lead

1995:

- Soil: As 33-1400;Pb 630-11,000mg/kg
- GW: As 1.03-7.85;Pb 0.05-1.2 mg/L
- 2001
 - Soil: As 560; Pb 20,000 mg/kg
 - GW: As 12-50,500;Pb 13-1,420 ug/L

2005/2006:

Soil: As 1,200; Pb 10,600 mg/kg GW: As 22-29,800; Pb 104-893 ug/L

2007:

Soil: As 712; Pb 24,700 mg/kg GW: As 2-2.8; Pb 0.001-0.5 mg/L

Environmental Risk may be much greater than LSP reports

Remediation Strategies

- Sustainable solutions!
 - Prefer "In-Situ" methods
 - Passive vs Active systems
- Bio/Phyto-remediation may not be applicable
- Development of a remediation "toolbox" as there may not be a single fix
- As and Pb require differential treatment

Table 1. Remediation Technologies Matrix for Metals in Soils and Ground-Water

Remediation Technology	Metals Treated	Cost	Long-term Effectiveness/ Permanence	Commercial Availability	General Acceptance	Applicability to High Metals Concentrations	Applicability to Mixed Waste (metals & organics)	Toxicity Reduction	Mobility Reduction	Volume Reduction
Capping	1-3	+	¢t.	+	+	¢α	+	«	+	«
Subsurface Barriers	1-3,5	+	¢t.	+	+	¢α	+	«	+	«
Solidification/ Stabilization Ex situ	1-3,5	•	•	+	+	+	+	«	+	«
Solidification/ Stabilization In situ	1,2,4,6	+	•	+	+	+	+	«	+	«
Vitrification Ex situ	1-3,5	α	+	•	•	+	+	«	+	«
Vitrification In situ	1-3,7	α	+	•	•	+	+	«	+	«
Chemical Treatment	2	-	•	•	•	-	-	+	+	«
Permeable Treatment Walls	2		•	•	•	-		+	+	«
Biological Treatment	1-5	+	α	•	•	α	-	+	+	«
Physical Separation	1-6	•	+	+	+	+	ex	«	«	+
Soil Washing	1-3,5-7	•	+	+	+	+	•	œ	œ	+
Pyrometallurgical Extraction	1-5,7	α	+	+	+	+	«	œ	œ	+
In situ Soil Flushing	1,2,7	+	¢τ	+	+	+	+	«	«	+
Electrokinetic Treatment	1-6	•	+	+	+	+	-	«	«	+

¹⁻Lead, 2-Chromium, 3-Arsenic, 4-Zinc, 5-Cadmium, 6-Copper, 7-Mercury

⁺ Good, • Average, « Marginal, - Inadequate Information

Permeable Treatment Walls

- Use of a permeable subsurface wall containing a material-specific reactant
- Limestone for Pb, increases pH in highly acidic water and may effectively immobilize the Pb
- Can be used in conjunction with a slurry wall
- A quick improvement to prevent leaching to environmental receptors
- Can be employed during redevelopment activity

Vision for Future Redevelopment

Works Cited

- Chemical Lane/Monsanto. Kristen Babicz, Kristen Queenan. May 9, 2011.
 http://faculty.umb.edu/anamarija.frankic/eeos476/ProjectSites/ChemicalLane/eeos476chemicallane.html
- Tier Classification Transmittal Form. Submitted by FBT Realty to MA DEP. February 9, 2009. Transaction ID 284988. http://public.dep.state.ma.us/fileviewer/Rtn.aspx?rtn=3-0013341
- Mystic Tier II Transfer Narrative. Submitted by Mystic Landing LLC to MA DEP. Transaction ID 250108. http://public.dep.state.ma.us/fileviewer/Rtn.aspx?rtn=3-0013341
- Remediation of Metals-Contaminated Soils and Groundwater. Cynthia Evanko, David Dzombak. Prepared for Ground-Water Remediation Technologies Analysis Center. October, 1997. http://clu-in.org/download/toolkit/metals.pdf
- Reddy, Krishna R., Jeffrey A. Adams, and Christina Richardson. "Potential Technologies For Remediation Of Brownfields."
 Practice Periodical Of Hazardous, Toxic & Radioactive Waste Management 3.2 (1999): 61. GreenFILE. Web. 15 Dec. 2011.
- Hornsby, Michael L., and Peter W. Sawchuck. "Brownfield Redevelopment Of Koppers Seaboard Site In Kearny, New Jersey." Practice Periodical Of Hazardous, Toxic & Radioactive Waste Management 3.2 (1999): 88. GreenFILE. Web. 15 Dec. 2011.
- Roger D. Reeves, et al. "Phytoremediation Of Inorganics: Realism And Synergies." International Journal Of Phytoremediation 11.2 (2009): 97-114. GreenFILE. Web. 15 Dec. 2011.
- Www.sunsetparkchron.com/wp-content/uploads/2009/12/picture-31.png
- images.standardmadness.com/10signs/parking-lot.jpg